
A Layer-2 Solution for Secure and Scalable
Move on Ethereum

Moved Network

https://moved.network

Abstract

The Move programming language offers a secure and auditable
framework for developing smart contracts. However, existing Move-
based blockchains face challenges with limited ecosystem traction
and low liquidity bottlenecks. This whitepaper introduces Moved,
a groundbreaking layer 2 optimistic rollup built on the Optimism
OP Stack, enabling developers to build scalable decentralized ap-
plications while leveraging the liquidity and network effects of the
Ethereum mainnet. Moved features a high-performance execution
layer optimized for the Move language, achieving unprecedented
scalability and usability through the OP Stack’s modular architecture.
By processing transactions off-chain and utilizing the OP Stack’s
optimistic rollup protocol, Moved inherits Ethereum’s security while
achieving orders-of-magnitude higher throughput than executing
transactions directly on Ethereum.

1 Introduction

The inception of Bitcoin in 2008 [1] ushered in a new era of decentralized
and trustless computation facilitated by blockchain technology. While Bit-
coin’s core purpose was enabling peer-to-peer digital cash, it laid the founda-
tional primitives for a more generalized blockchain framework. Ethereum [2],
introduced in 2015, built upon these primitives by incorporating a Turing-
complete virtual machine, paving the way for executable smart contracts and
decentralized applications (dapps). The Ethereum Virtual Machine (EVM)

1

is a stack-based VM with a Turing complete instruction set that enables
the deployment and execution of user-defined bytecode programs on the
Ethereum blockchain. This revolutionary model of distributed computation
rapidly catalyzed innovation, giving rise to decentralized finance (DeFi), non-
fungible tokens (NFTs), decentralized autonomous organizations (DAOs),
among other blockchain-native applications and use cases.

Solidity vs Move. While Solidity became the de facto language for
Ethereum smart contract development, it suffers from inherent security risks
stemming from semantic ambiguities, lack of formalism, and code complexity
[3]. These vulnerabilities have led to numerous high-profile exploits resulting
in substantial financial losses, most notably the infamous 2016 DAO attack
[4] which drained around $60 million in ether at the time, as well as the more
recent $190 million Nomad bridge hack [5] in 2022. The Move language [6],
originally designed at Meta (Facebook) for the Diem blockchain, emerged as a
safer and more robust alternative to Solidity. Move employs a bytecode inter-
pretation execution model and follows a strict design philosophy focused on
simplicity, auditability, and prevention of unintended behaviors. With influ-
ences from linear logic and secure coding principles, Move mitigates many of
Solidity’s pitfalls by preventing re-entrancy, data races, and other common
vulnerabilities through its design that allows only a single execution con-
text to access resources at any given time. Despite its security advantages,
the Move ecosystem has faced challenges with limited liquidity, hindering
widespread adoption compared to the more established Ethereum/Solidity
landscape.

Moved Network Solution. To unlock Move’s full potential while in-
heriting Ethereum’s unparalleled liquidity and network effects, we introduce
Moved - a novel optimistic rollup architecture built on the Optimism OP
Stack [7]. Moved replaces the traditional EVM execution layer with a Move
execution layer, enabling seamless execution of Move smart contracts. The
OP Stack’s modular architecture allows us to leverage its sequencer, batcher,
and proposer modules, while integrating our custom Move execution layer.
As part of the execution process, we store contract data in a manner con-
sistent with traditional Move blockchains, ensuring compatibility and ease
of use for Move developers. To further improve transaction finality, we will
be adding ZK proof computation on top of the optimistic rollup, leveraging
the benefits of both technologies. By combining the scalability and usabil-

2

ity of optimistic rollup with the security and finality of ZK proofs, Moved
achieves a unique balance of performance and security, enabling fast and
secure execution of Move smart contracts.

Central to Moved is a modular rollup design that prioritizes scalability,
parallelization, and flexibility. We employ parallel execution techniques to
maximize throughput, with the ability to run multiple Move virtual execution
sessions concurrently. Our architecture remains flexible, enabling integration
of the most efficient and available ZK tooling to provide fast finality. This
agile approach ensures Moved can adapt to emerging innovations, consis-
tently delivering a high-throughput layer 2 scaling solution as the ecosystem
evolves.

Outline. Rest of the paper is organized as follows. In Section 2 we give
an overview of the Moved’s modular rollup solution; in 3 we describe in de-
tail how the ZK proof computation is designed; in Section 4 we discuss EVM
compatibility and the benefits of seamless interaction with the Ethereum
ecosystem; then lastly in Section 5 we describe the SDK for developer expe-
rience and detail the gas computation on the native ETH token.

2 Moved Rollup

The Moved rollup is composed of several modular components, each serving
a specialized role in the optimistic rollup architecture as shown in Figure 1.

� Sequencer: The sequencer is responsible for ordering and batching
incoming transactions, ensuring a consistent and tamper-proof trans-
action log.

� Move Execution Layer: The Move execution layer is a customized
component that enables seamless execution of Move smart contracts.
This layer interacts with the sequencer to execute transactions and
store the resulting changes in the database.

� Batcher: The batcher aggregates transactions into batches, which are
then processed by the Move execution layer.

� Proposer: The proposer is responsible for proposing new states to the
Ethereum mainnet, ensuring that the Moved rollup remains in sync
with the Ethereum blockchain.

3

The Optimism OP Stack, which underlies the Moved rollup, uses a com-
bination of on-chain and off-chain components to achieve scalability and se-
curity. On-chain, the OP Stack uses Bedrock contracts to store the ordered
sequence of transactions, while off-chain, the sequencer and batcher work
together to execute transactions and produce new state roots. The Bedrock
contracts serve as the source of truth for the rollup’s state, allowing the OP
Stack to ensure that the Moved rollup remains in sync with the Ethereum
mainnet.

When a new batch of transactions is processed, the OP Stack generates
a new state root, which is then proposed to the Ethereum mainnet via the
proposer. If the proposal is accepted, the new state root is written to the
Bedrock contracts, effectively updating the rollup’s state. This process allows
the Moved rollup to achieve high throughput and low latency, while still
maintaining the security guarantees of the Ethereum mainnet.

The Moved rollup architecture is designed to be modular, allowing for
continuous improvement and optimization of individual components. By
leveraging the Optimism OP Stack’s modular architecture, we can seamlessly
swap out and upgrade components without disrupting the overall system.
This modularity enables us to support the Move VM by simply replacing the
execution layer, rather than building an entirely new rollup.

To ensure the integrity of the rollup, we will utilize validity proofs using
ZK Move implementation. This will enable fast and secure execution of Move
smart contracts, while maintaining the security guarantees of the Ethereum
mainnet. Additionally, a dedicated Bridge Contract enables seamless liquid-
ity flows between the Moved rollup and the Ethereum mainnet. This bridge
facilitates transfers of native ETH as well as ERC-20 standard tokens, al-
lowing users to deposit assets from Ethereum into the Moved Network and
withdraw them from Moved back to the Ethereum mainnet.

3 Zero Knowledge Proofs

To ensure the integrity of the Moved rollup, we utilize Zero Knowledge (ZK)
proofs to validate the correctness of off-chain computations for each individ-
ual transaction. The ZK proof is generated using the ZK Move implementa-
tion, which provides a secure and efficient way to prove the validity of Move
smart contract executions. The ZK validity proof is then sent to Ethereum
along with the proposed state update, allowing for fast and secure finaliza-

4

Figure 1: High-level architecture of the Moved optimistic rollup, depicting
the interaction between user applications, the sequencer, Move execution
layer, batcher, proposer, and the Ethereum L1 verifier contract, with seamless
liquidity flows enabled by the bridge contract.

tion of transactions. By leveraging ZK proofs, we can achieve fast and secure
execution of Move smart contracts, while maintaining the security guarantees
of the Ethereum mainnet. This approach enables transactions to be finalized
in a matter of minutes, rather than waiting for a week-long dispute period
as with traditional optimistic rollup architectures.

The use of ZK proofs in conjunction with optimistic rollup enables us to
achieve a unique balance of scalability, security, and usability. By generating
ZK proofs for each individual transaction, we can ensure that the Moved
rollup remains secure and trustworthy, while also enabling fast and efficient
execution of Move smart contracts.

3.1 ZK VM

One approach to implementing ZK proofs for Move smart contracts is to
utilize a generalized ZK VM like Risc 0 [8]. This approach involves compiling
the Move VM to the RISC-V instruction set architecture (ISA) and executing

5

it within the zkVM. The zkVM generates cryptographic constraints that
model the computational steps, which are then used to produce a succinct
ZK-Proof. While this approach is viable, it may have performance limitations
due to the overhead of the zkVM. However, it can still be useful in a hybrid
model where ZK computation is only run on demand, allowing for faster
finality for urgent transactions while maintaining the week-long finality for
others.

(a) Step 1: Guest executions receive state and transaction data to run Move VM,
producing state writeset and ZK-Proof outputs.

(b) Step 2: All the state writesets update Merkle tree and proofs are aggregated
recursively.

Figure 2: Workflow of Risc Zero executing a Move smart contract to compute
a new Merkle root representing the updated state.

The Zero Knowledge execution process within Risc Zero involves the in-
teraction between a non-ZK Host environment and a ZK-friendly Guest en-
vironment, as depicted in Figure 2. The Host retrieves all necessary state
details from a Sparse Merkle Tree [9] representation and transmits them to
the Guest. The goal of the ZK execution is to perform the state transition by
taking as input the current state root together with a batch of transactions,
and producing as output the new state root after the transactions in that
batch have been executed. The ZK execution proceeds in two steps.

First, all transactions (deployment of new Move contracts, or executions

6

on existing ones) in the batch are executed in parallel on separate Guests.
Within each Guest, the Move smart contract is executed by running the
Move virtual machine inside a ZK computation model. The output from
each of these executions is a changeset containing the state changes to be
applied across different account resources. Once the ZK computation finishes
processing we will have a proof of the execution for the transaction.

This proof also includes applying all the changes to the state from the
individual changes sets and computing the updated Merkle root. This up-
dated root, along with the ZK proof that is was correctly produced, is the
output of the ZK execution.

3.2 ZK Assembly

While the initial Moved architecture relies on Risc Zero’s general zkVM, we
plan to implement Move-optimized ZK execution in a future phase.

Move Bytecode Level ZK Execution. An alternative approach to
implementing ZK proofs for Move smart contracts is to utilize a ZK Assembly
language like Miden [10].

This approach involves mapping each Move bytecode to a corresponding
Miden assembly instruction, allowing for ZK computation to be performed
directly on the smart contract bytecodes. By executing the bytecodes at a
lower level, this approach eliminates the overhead of running the entire Move
VM, resulting in improved performance and efficiency. The Miden assembly
language is well-suited for this purpose, as it is similar to a programming
language assembly and can be easily mapped to the Move bytecode.

Bytecode::Add => Node::Instruction(Instruction::Add),

Bytecode::Sub => Node::Instruction(Instruction::Sub),

Bytecode::Mul => Node::Instruction(Instruction::Mul),

Bytecode::Div => Node::Instruction(Instruction::U32Div),

Figure 3: Illustration of a straightforward mapping from Move bytecode
instructions to the equivalent Miden ZK assembly representations.

Achieving bytecode-level ZK execution requires a specialized compiler
toolchain that can analyze and translate individual Move bytecode instruc-
tions into an optimized ZK assembly representation. Moved’s compiler parses

7

fun collatz(n: u32): u32 {
let count: u32 = 0;

while (n != 1) {
if (n % 2 == 0) {
n = n / 2;

} else {
n = 3 * n + 1;

};
count = count + 1;

};
count

}

(a) Collatz conjecture sequence cal-
culation in Move

vec![

Bytecode::LdU32(0),

Bytecode::StLoc(1),

Bytecode::CopyLoc(0), (2)

Bytecode::LdU32(1),

Bytecode::Neq,

Bytecode::BrFalse(29), (5)

...

Bytecode::Branch(2), (28)

Bytecode::MoveLoc(1), (29)

Bytecode::Ret,

]

(b) Generated Move bytecodes with
line numbers in parantheses

(c) Corresponding Control Flow
Graph between lines

proc.collatz

...

while.true

// if-else logic

...

end

// Ln 29: Save in memory, exit

mem_store.COLLATZ_INDEX

end

(d) Generated Miden assembly dis-
playing only the branching sections

Figure 4: Move source code (a) is compiled to bytecode with branches (b),
which constructs a Control Flow Graph (c) representing state transitions,
guiding the heuristic generation of optimized Miden assembly (d).

8

through each Move bytecode operation, methodically converting it into equiv-
alent ZK assembly code tailored for the Miden virtual machine. This conver-
sion process involves a mix of direct bytecode mappings for straightforward
instructions (as illustrated in Figure 3) as well as complex mappings for those
that require more intricate ZK constraint modeling (as the conversion steps
shown in Figure 4).

Once the entire Move bytecode has been transformed into the ZK as-
sembly representation, the resulting code essentially becomes the ZK smart
contract deployed within the Miden execution environment. When users
initiate transactions, the corresponding ZK assembly instructions are loaded
and executed within the ZK virtual machine’s constrained CPU. This ZK ex-
ecution model generates succinct proofs at the granular bytecode operation
level, attesting to the correct computational steps. Additionally, Moved’s
compiler performs further optimizations on the final ZK assembly, enhanc-
ing execution efficiency by minimizing redundant constraints and leveraging
batch processing where applicable.

4 EVM Compatibility

Moved provides seamless compatibility with the Ethereum ecosystem through
a novel Move smart contract-based approach. The EVM Emulator contract
accurately replicates the behavior of the EVM, enabling the deployment and
execution of Solidity contracts on the Move VM. By executing EVM bytecode
exactly as expected and calculating gas costs based on EVM specifications,
the EVM Emulator ensures that Solidity contracts run correctly and produce
the same results as they would on the Ethereum mainnet.

The EVM Emulator has been thoroughly tested and is able to run
Ethereum tests as expected, demonstrating its compatibility and correct-
ness. This means that developers can confidently deploy their existing
Solidity contracts on the Moved network without modification, taking
advantage of the scalability and security of the Moved platform.

By providing EVM compatibility, Moved aims to bridge the gap between
the Ethereum and Move ecosystems, enabling developers to leverage the best
of both worlds.

9

5 Moved SDK and Gas

Moved Network will provide an SDK in multiple programming languages to
facilitate developers interacting with our system. In our system architecture,
we prioritize seamless integration with widely adopted Ethereum wallets,
facilitating smooth transaction signing and transmission to the Sequencer.
To achieve this, we ensure compatibility with Ethereum RPC endpoints,
enabling robust support for these wallets. It will also query the data avail-
ability layer to get details on accounts. All of this is done by connecting to
the Moved Network’s Ethereum-standard RPC endpoints.

An important aspect of the Moved SDK is accurately computing the gas
costs associated with executing transactions on the rollup network. There
are two primary fee components - the cost of data availability storage and the
cost of settling state proofs on Ethereum Layer 1. Gas fees are denominated
and paid in ETH tokens.

When initiating a transaction, developers can leverage the estimateGas
API which provides an estimate of the gas contribution from their transaction
to the overall batch size. The base fee is the minimum price per transaction,
primarily accounting for storage costs on Layer 1 and the data availabil-
ity layer. Notably, the Ethereum Dencun update [11] significantly reduces
the costs associated with temporary storage, which is particularly relevant
for layer-2 solutions like Moved. With this update, Ethereum charges sub-
stantially less for temporary storage, making it more economical for layer-2
solutions to store data on the Ethereum mainnet. As a result, the base fee
for transactions on the Moved network is expected to be very low, making it
even more attractive for developers and users to leverage the scalability and
security of the Moved platform.

Separately, the execution gas is a dynamic fee calculated by the Moved
compiler based on the complexity of the Move bytecode execution. This
portion is paid to the Sequencer and Provers to compensate for the com-
putational resources consumed in processing transactions and maintaining
operational overheads. Through this multi-component gas model, Moved
ensures an equitable distribution of fees across different layers of the rollup
architecture.

10

6 Conclusion

The Moved Network represents a significant step forward in the evolution
of blockchain technology, offering a scalable, secure, and EVM compati-
ble platform for decentralized applications. By leveraging the Optimism
OP Stack and Move virtual machine, Moved enables developers to build
high-performance applications that inherit the security guarantees of the
Ethereum mainnet.

The use of Zero-Knowledge proofs and a modular architecture ensures
that the Moved network remains secure, scalable, and adaptable to the needs
of its users. With its unique combination of scalability, security, and EVM
compatibility, the Moved network is poised to unlock new possibilities for
decentralized applications and bring the benefits of blockchain technology to
a wider audience.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Dec
2008.

[2] V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform,” 2014.

[3] “Security considerations,” 2016. Accessed on 2024-03-20.

[4] P. Daian, “Analysis of the dao exploit.” http://hackingdistributed.

com/2016/06/18/analysis-of-the-dao-exploit/, 2016. Accessed:
2024-03-20.

[5] Nomad, “Nomad bridge incident.” https://nomad.xyz/incident.

html, 2022. Accessed: 2024-03-20.

[6] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki,
A. Pott, S. Qadeer, Rain, D. Russi, S. Sezer, T. Zakian, and R. Zhou,
“Move: A language with programmable resources,” 2020. Accessed on
2024-03-20.

[7] “Getting started with the op stack.” https://docs.optimism.io/

stack/getting-started, 2024. Accessed: 2024-08-16.

11

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://nomad.xyz/incident.html
https://nomad.xyz/incident.html
https://docs.optimism.io/stack/getting-started
https://docs.optimism.io/stack/getting-started

[8] J. Bruestle, P. Gafni, and the RISC Zero Team, “Risc zero zkvm: Scal-
able, transparent arguments of risc-v integrity,” Aug 2023.

[9] R. Östersjö, “Sparse merkle trees: Definitions and space-time trade-offs
with applications for balloon,” 2016.

[10] “Stark-based virtual machine.” https://github.com/

0xPolygonMiden/miden-vm, 2024.

[11] “The dencun upgrade explained.” https://consensys.io/

ethereum-dencun-upgrade, 2024. Accessed: 2024-08-16.

12

https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xPolygonMiden/miden-vm
https://consensys.io/ethereum-dencun-upgrade
https://consensys.io/ethereum-dencun-upgrade

	Introduction
	Moved Rollup
	Zero Knowledge Proofs
	ZK VM
	ZK Assembly

	EVM Compatibility
	Moved SDK and Gas
	Conclusion

